No. of Printed Pages: 3

GS-322

IV Semester B.A./B.Sc. Examination, May/June - 2019

MATHEMATICS Mathematics - IV (CBCS) (F+R) (2015-16 & Onwards)

Time: 3 Hours

Max. Marks: 70

Instructions: Answer all Parts.

PART-A

Answer any five questions: 1.

(a) Define normal subgroup of a group.

Verify whether $f: (Z, +) \rightarrow (Z, +)$ defined by f(n) = 4n + 2 is a homomor

Obtain half range sine series of f(x) = 2x - 1 in the interval (0, 1).

Write the necessary conditions for f(x, y) to have extreme values at

Find L[cos²(2t)] (e)

Find $L^{-1} \left[\frac{2S-1}{S^2+16} \right]^{\frac{1}{2}} = [(1801)]$ and $(2S)^{\frac{1}{2}} = (1801)$ (1801)(f)

Solve $(D^2 + 4D + 2)y = 0$.

Verify whether $(1-x^2)y'' - 3xy' - y = 0$ is exact.

PART-B

Answer one full question:

1x15=15

- Prove that a subgroup H of a group G is a normal subgroup of G if and only if every left coset of H is also a right coset of H in G.
 - If N is a normal subgroup of a group G and $\frac{G}{N}$ is a collection of all cosets of N in G.

Prove that G_N is a group under the binary operation $(N_a)(N_b) =$

 $N_{ab}, \forall N_a, N_b \in G_N$

If $f:G\to G$ is a homomorphism of a group G into itself and H is a cyclic subgroup of G then prove that f(H) is also a cyclic subgroup of G.

Prove that the product of any two normal subgroups of a group is again 3. (a) a normal subgroup.

Let $G = \left\{ \frac{a + b\sqrt{2}}{a, b \in Q} \right\}$. Show that $f: (G, +) \to (G, +)$ defined by

 $f(a+b\sqrt{2}) = a-b\sqrt{2}$ is an isomorphism.

State and prove Cayley's theorem.

PART-C

Answer any two full questions :

2x15=30

- 4. (a) Obtain Fourier series expansion of the function $f(x) = \begin{cases} -x & \text{for } -\pi < x < 0 \\ x & \text{for } 0 < x < \pi \end{cases}$
 - (b) Obtain Fourier series expansion of the function $f(x) = x x^2$ in the interval (-1,1).
 - (c) Find Taylor's series expansion of $f(x, y) = \frac{y^2}{x^3}$ about the point (1, -1) upto 2^{nd} degree terms.

OR

- 5. (a) Find the maximum and minimum distances of the point (1,2,3) from the sphere $x^2 + y^2 + z^2 = 56$ using Lagrange's method.
 - (b) Find the extreme values of the function $f(x, y) = x^3 + y^3 3x 12y + 20$
 - (c) Find the half range Fourier cosine series of $f(x) = \sin x$ in the interval $(0, \pi)$.
- **6.** (a) (i) If L[f(t)] = F(S) then prove that $L[f(at)] = \frac{1}{a} F\left(\frac{s}{a}\right)$.
 - (ii) Find L[e-t(2sin2t. cos5t)]
 - (b) Find the Laplace transform of the function

 $f(t) = \begin{cases} 1, & 0 < t < T \\ -1, & T < t < 2T \end{cases}$ given that f(t) is periodic with period 2T.

(c) Find $L^{-1} \left[\frac{S+5}{(S-1)(S^2+4)} \right]$

OR

- 7. (a) If L[f(t)] = F(S) then prove that $L\left[\frac{f(t)}{t}\right] = \int_{S}^{\infty} F(S) ds$. Hence evaluate $L\left[\frac{\sin t}{t}\right]$
 - (b) Find $L^{-1} \left[log \left(\frac{S^2 + 1}{S(S+1)} \right) \right]$
 - (c) State convolution theorem and use it to find $L^{-1}\left[\frac{S}{(S^2+a^2)^2}\right]$

PART-D

Answer one full question :

1x15=15

- Solve $y'' + 3y' + 2y = \cos^2 x$
 - Solve $x^2y'' xy' + 2y = x \log x$
 - solve $xy'' (2x+1)y' + (x+1)y = x^2e^{2x}$ given that e^x is a part of the (c) complementary function.

- Solve $(D^2-2D+4)y=e^x \cos x$ 9. (a)
 - Solve $\frac{dx}{dt} + 7x y = 0$; $\frac{dy}{dt} + 2x + 5y = 0$

to a wright the think that at the wall was

(c) Solve $x \frac{d^2y}{dx^2} - \frac{dy}{dx} - 4x^3y = 8x^3\sin(x^2)$ using the transformation $z = x^2$.

-000-